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A b s t r a c t - - T h i s  study aims at utilizing the dynamic behavior of artificial neural networks (ANNs) 
to solve multiobjective programming (MOP) and multilevel programming (MLP) problems. The 
traditional and nontraditional approaches to the MLP are first classified into five categories. Then, 
based on the approach proposed by Hopfield and Tank [1], the optimization problem is converted 
into a system of nonlinear differential equations through the use of an energy function and Lagrange 
multipliers. Finally, the procedure is extended to MOP and MLP problems. To solve the resulting 
differential equations, a steepest descent search technique is used. This proposed nontraditional 
algorithm is efficient for solving complex problems, and is especially useful for implementation on 
a large-scale VLSI, in which the MOP and MLP problems can be solved on a real time basis. To 
illustrate the approach, several numerical examples are solved and compared. (~) 2004 Elsevier Ltd. 
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1. I N T R O D U C T I O N  

In a hierarchical organization with multiple decision makers (DMs), decentralized planning prob- 
lems are tackled and hopefully solved by the use of the multilevel mathematical programming 
(MLP) approach. The organization explicitly assigns each agent a unique objective and a set of 
decision variables as well as a set of common constraints that affect all the agents [2]. There are 
four common characteristics of the multilevel organization: 

(i) interactive decision-making units exist within a predominantly hierarchical structure; 
(ii) execution of decisions is sequential, from top level to bottom level; 

Off) each unit independently maximizes its own net benefits, but is affected by actions of other 
units through externalities; and 

(iv) the external effect on a DM's problem can be reflected in both his objective function and 
his set of feasible decision space. 

The basic concept of the MLP method is that an upper-level DM sets his or her goal and/or 
decisions and then asks each subordinate level of the organization for their optima which are 
calculated in isolation. Lower-level DM's decisions are then submitted and modified by the upper- 
level DM with consideration of the overall benefits for the organization. The process is continued 
until a satisfactory solution is reached [3]. This decision-making process is extremely useful to 
such decentralized systems as agriculture, government policy, economic systems, finance, warfare, 
transportation, and network designs, and is particularly suitable for conflict resolution [4-7]. 

The simplest case of MLP problems is the bilevel programming (BLP) problem, where the 
top level DM has control over the vector x:  while the bottom level DM controls the vector x2. 
Letting the performance functions of f :  and f2 for the two planners are linear and bounded, then 
the BLP problem can be represented as 

max / : (x : ,  x2) = c71x1 H-c~2x2 (upper level), (1) 

where x2 solves 

m2ax f2(xl, x2) ---- cTlxz -F C2T2X2 (lower level), 

s.t. (x:, x2) E X = {(xz, x2) I Azx: + A2x~ _< b, and xz, x2 _> 0}, 

where c:: ,  c12, c21, c22, and b are vectors, A:,  and As are matrices, and X represents the 
constraint region. 

Notice that if there is no hierarchical control feature, equation (1) can be simplified to a MOP 
problem. In this concern, MOP and MLP are closely related. 

The above-nested optimization model has been proven to be NP-hard by Ben-Ayed and Blair [8] 
and is difficult to solve. Various methods have been proposed to solve these MLP problems (see [9] 
for detail). We can roughly classify them into five categories (see Figure 1). The first three cat- 
egories, i.e., extreme-point search, transformation approach, and descent and heuristic, can be 
referred to as the traditional approaches. And the last two, i.e., intelligent computation (instead 
of evolutionary approach in [9]) and interior point approach, are based on more recent develop- 
ments. The basic concept of extreme-point search, Category I, is to seek a compromise vertex by 
simplex algorithm based on adjusting the control variables. The transformation approach, Cat- 
egory II, involves transforming the lower-level problems into constraints for the higher level by 
the use of various techniques such as Karush-Kuhn-Tucker (KKT) conditions, penalty functions, 
barrier functions, etc. Category III is developed for solving discrete or nonlinear MLP problems, 
and is based on existing search techniques or heuristic approaches such as gradient techniques, 
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I I. Extreme-point search 

--1 Kth-best algorithm 

Grid-search algorithm 

--~ Fuzzy approach 

.__~ Interactive approach 

I 
1 
1 
I (Shih 2002) 

I ]1I. Transformation approach 

, IN. Descent and heuristic ~ - -  

Complement pivot 

Branch-and-bound 

t Penalty function 

--~ Descent method 

I -Branch-and-bound 

--~ Cutting plane 

_ ~  Dynamic programming 

} 

L 
1 

(Shih & Lee 2001) 

I VI. Intelligent computation ~ - -  

---q Tabu search 

-q Simulated annealing 

---~ Genetic algorithm 

_ _ - •  Artificial neural network (this study) 

[IV. Interior point il Primal-dual algorithm It (Weng & Wen 2000) 

Figure 1. A taxonomy of methods for multilevel programming problems (extension 
of [o]). 
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cutting-plane algorithm, and branch-and-bound heuristics. The newly developed interior point 
method [10] is less sensitive to problem size and would be suitable for solving MLP problems. 
We append this method to Lee and Shih's original classification [9] as Category V. Category VI 
is based on the recent developments in intelligent computations, which are especially suited for 
solving NP-hard problems such as the multiploy problems. This category is relatively new and 
includes Tabu search, simulated annealing, and genetic algorithm. Artificial neural networks 
(ANNs) can also be included in this category and this paper will investigate the feasibility of 
using ANN to solve the MLP problems. 

In real-world applications, the dynamic nature of the MLP makes the problem very difficult 
to solve. Although various approaches have been suggested to lessen the burden of computation 
such as the use of fuzzy logic (Category I) [11], dynamic programming (Category III) [12], and 
interactive approach (Category I) [13], further research is still needed to obtain better approaches. 
ANN, with its dynamic representation, appears to be a promising technique for solving this 
difficult problem on a real-time basis. This paper explores this nontraditional approach, ANN, 
to solve the MLP and MOP problems. Furthermore, real-time solution of these problems is also 
explored. Notice that we temporarily arrange the interactive approach as Category I. However, 
interactive approach can also be developed based on other methods in other categories. 

Various investigators have applied ANN to solve optimization problems. Smith [14] summarized 
and reviewed the various approaches and divided the techniques into two categories: 

(1) Hop field neural network approach and 
(2) self-organizing neural network approach. 

Although other networks, such as the Boltzmann machine, have also been applied to solve op- 
timization problems, this machine approach can be considered as an extension of the Hopfield 
network [15]. 

Burke and Ignizio [15] claimed that there are two types of networks for emulating neural 
information processing of operations research problems: adaptive networks and nonadaptive 
networks. Hopfield network belongs to the latter case, in which information is processed through 
node activations and computation with no learning from examples. Its weights are derived from 
an energy function, or serving as a Lyapunov function, and the nodes stay transit according to 
the impact of local information (i.e., feedback) until a steady state is reached. Note that Hopfield 
and Tank's network is recurrent [16]. ~ 

2. A N N  F O R  O P T I M I Z A T I O I ~  

ANN is a promising technique to solve optimization problems because it can emulate the 
operations of the brain and uses parallel processing to save computational time [17]. The method 
dates back to six decades. McCulloch and Pyne [18,19] utilized logical calculus to emulate 
nervous activities. Since then, various types of analogue neural networks have been proposed for 
computation. In particular, Hopfield and Tank [1] made a momentous contribution for neural 
computation by solving a traveling salesman problem. Many investigators followed their work. 
Although Shirazi and Yih [20] present some weakness of the approach, many followers make 
further improvements and verifications (see [21]). Since then ANN approaches have been widely 
accepted as a competitive approach to traditional optimization techniques. 

In addition to the use of ANN to solve the traveling salesman problem, ANN was also used for 
solving linear programming (LP) problems. For example, Zak et al. [22] compared three ANNs 
in terms of their model complexity, complexity of individual neurons, and accuracy of solutions. 
Xia [23] compares three ANNs and proposes a network for solving the general LP problems 
through using simple hardware. At the same time, Cichocki et al. [17] recommend a new network 
to manage LP problems on-line by a simplified low-cost analog network. These works give us a 
trend for making further applications. 
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The ANN approach to optimization is to deal with a dynamic system, in which the energy 
function characterizes the behavior of the network and represents the problem to be solved. An 
ANN architecture can be realized by the use of an electronic circuit for on-line solution with 
parallel-distributed process. This is known as programming without computation [24]. These 
special characteristics are beneficial for real-time optimization, and can be applied to many areas 
such as vehicle routing, pattern recognition, scheduling, manufacturing, and numerous business 

applications [16,25-27]. 

For a LP problem with inequality constraints, we have 

min f (x )  = cTx, 

s.t. A x - b  < O, 

x~_O, 

(2)  

where x , c  E R nxi, A E R mxn, and b E R taxi 

The energy function E(x)  can be established using the Lagrange multiplier method as follows: 

E(x,  ,~) = cTX + ,~T (Ax - b) - 
c~ K 

2An-A -~ 2(Ax - b ) T ( A x  - b ) '  (3) 

where K, J~ E R "~xl and x _> 0. In addition, the regularization term a,,~'l-A is for improving the 
stability of the method [28], and a is a smaU positive number, e.g., 0.001. 

Taking partial derivate of equation (3) with respect to x and ,k, we obtain the following 
differential equations: 

OE(x, 
0 ~  = c + K A T  (Ax - b) + An-A, (4) 

OE(x, 
0h - A x  - b - aA. (5) 

After applying the steepest descent method, equations (4) and (5) can be converted into a 
system of difference equations in discrete form 

{ {m } x j ( k + l ) =  x j ( k ) - t z j ( k  ) c j + ~ a i j [ K r i ( k ) + ) ~ i ( k ) ]  , 
i = 1  

O, 

+ 1) = + - 

if xj(k + 1) > 0, 

if xj(k  + 1) <_ 0. 
(6) 

n 
where ri(k) = ~ j = l  aijxj - bi, K >_ O, ~ > O, and #j(k) and ~i(k) are positive learning rate 
parameters. 

Note that  the update equations for the independent vectors in the above expressions guarantee 
that  all components remain nonnegative. The ANN architecture realization of this process can 
be implemented by an electronic circuit, and will be simulated through MATLAB software [29] 
in this paper. 

A drawback in the penalty function approach is that  the penalty parameter K has to be 
large enough in order to get a solution with reasonable accuracy. However, from a practical 
implementation standpoint, a very large parameter value is not convenient [21]. We tested a 
model, which always obtains a solution with accuracy in the range between 0.1 and t.0. Also, 
in order to avoid oscillation of the system, the discrete-time learning rate parameters # and u 
in the descent algorithm cannot be too large. The interested readers can follow the procedure 
of Ku and Lee [30] to choose the appropriate value. We tested the model with a small positive 
number, e.g., 0.005 to 021, which is generally regarded as reasonable. 
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3. A N N  F O R  M U L T I P L E  O B J E C T I V E  P R O G R A M M I N G  

Using ANN to solve the MOP is fairly new, and only a limited number of investigations have 
been carried out. Sun et al. [32,33] focused on the elicitation, representation, and utilization of 
the preference information of a DM in a feed-forward ANN framework. Gen et al. [34] proposed 
a new neural network technique for solving fuzzy multiobjective LP problems based on the two- 
phase approach of Lee and Li [35]. Recently, Balakrishnan et al. [36] utilized a compromise 
factor ~ (0 < ~ < 1) to reflect the preference given to the two objectives of emission and 
economic dispatch. And one objective function was established and solved by using the ANN 
technique. The first one only tries to obtain the decision information for the interactive procedure 
through ANN, and the third one is simply a weighting method [31] with two objectives. However, 
the second one indeed directly utilizes ANN to solve the MOP problem. This work verifies the 
feasibility of the ANN approach for solving the MOP problems in spite of the fact that some 
details are omitted, and enlightens a path for our development. 

To deal with the problem of MOP, we utilize the method of global criterion [37] with a nor- 
malized process [38]. The essence of this approach includes the following: 

(a) reference points, i.e., the concept of an ideal system, 
(b) distance, i.e., location of alternatives away from reference points, and 
(c) normalization, i.e., the process to eliminate nonmeasurability among objectives. 

Note that, based on two reference points in each objective, Hwang et al. [38] proposed a normalized 
process to obtain a better estimation. 

Reference points of the technique are positive ideal solution (PIS) f+ (x )  and negative ideal 
solution (NIS) f / ( x )  [35]. A PIS is defined, for each objective, as the maximum (the best) 
solution of the single-objective maximization problem, and the minimum (the best) solution 
of the single-objective minimization problem. NIS is defined as the opposite of PIS. In other 
words, for each objective, the maximum (or worst) solution of the minimization problem, and 
the minimum (the worst) solution of the maximization problem. A total 2k numbers of PISs and 
NISs are generated for a problem with k objectives. In addition, the distance measured is related 
to Minkowski's Lp metric with some modifications (see [35,39]). The Lp metric defines distance 
between two points, i.e., one objective fk and its ideal solution fk (x+), in k-dimensional space 

dp = ( f+(x)  - fk(x))"  , for p _ > 1. 

The parameter, p, for distance setting depends on the preference of the DM or the ease of 
manipulation. There are several popular settings: 

(a) p = 1, Manhattan distance; 
(b) p = 2, Euclidean distance; 
(c) p = oo, Tchebycheff distance. 

For the convenience of processing, it is quite common to use an extreme case, i.e., p = 1 or p = c% 
so that the above representation can be kept in linear form. 

The method of global criterion is to minimize the distance function of the multiple objectives 
a s  

min | ~  - f / ( x ) ) |  ' k = l , . . . , K ,  (r) 
s.t. p_>l ,  x c X ,  

where X is the constraint set of the above MODM expression. 
Based on equation (7), equations (3)-(6) can be obtained, and the problem ean be solved by 

the ANN approach. In the present paper, MATLAB software [28] is used to carry out the solution 
process. 
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To il lustrate the approach,  the following example is solved. 

EXAMPLE 1. A two-objective programming problem [9]. 

max  f l  = 2xl - x2 

max f2 = Xl + 2x2 

s.t. 3 x i - 5 x 2 < _ 1 5 ,  

3xi - x2 <_ 21, 

3Xl + x2 ~ 27, 

3xl -k 4x2 ~ 45, 

x l  + 3x2 ! 30, 

Xl~Z2 ~ Or 

(objective 1), 

(objective 2), 

X will be used to represent  the constraint  set. 
After obtaining the PIS f+ (x )  = (13.5,21) and NIS f - ( x )  = ( - 1 0 , 0 ) ,  we can set the new 

auxiliary problem through the method  of global criterion, with p = 1, as 

m i n d ~  = ( [ (13"m - s ~ ) l ~ l  [(:, - s,)l l 
L(13.57T~)J  J + ~ L ( - ~ - - ~ J  J 

s.t. x E X ,  

where k = 2. 

12 

10 . . . . . . . . .  . . . . . . . . . .  . . . . . . . . .  . . . . . . . . . . .  , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  , . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . .  

Z 

" - - - - - - - - - - - -  ! 

1 2 3 4 5 6 7 8 9 10 
i t e ra t ions  x lo 5 

X 1 

x 
2 

Figure 2. Solution trajectories, Example 1 (p = 1). 
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s 

10 . . . . . . . . . . . . . . . . . . . . . . . . .  ' . . . . . . . . . . . . . . . . . . . . . . . . .  ' . . . . . . . . . . . . . . . . . . . . . . . . .  • . . . . . . . . . . . .  • . . . . . . . . . . . .  

8 . . . . . . . . . . . .  ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4 ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

0 
0 0.5 1 1.5 2 2.5 3 3.5 4 

i t e ra t ions  x lo  ~ 

X1 

X 2 

Figure 3. Solution trajectories, Example 1 (p ---- co). 

The vectors bTxi, clx9, and the matrix ATx9 are known and the problem is solved with p = 1. 
The minimal Manha t t an  distance is d v = 0.32952 with the decision vector x* = ( x ~ , x ~ )  = 

(7.000, 6.000) and the objective vector f* = (f~', f~) = (8.000, 19.000) at K -- 0.5. We can find 

tha t  the same result can be obtained by using extreme-point search approach (Category I) [9]. 
For p = c~, the formulation can be expressed as 

min dp,  

s.t. x E X ,  

(13.5 --/1) 
< d p ,  

(13.5 + 10) 

(21 - f l )  
< dp. 

( 2 1 - 0 )  

By setting up the vectors b l l x l ,  el×s,  and the matr ix A s x n ,  the problem was solved. The 
minimal Tchebycheff distance dp = 0.168526 with x* = (x~,x~) = ( 7 . 3 0 7 3 , 5 . 0 7 8 2 )  and the 
objective vector f* -- (f~, f~) -- (9.5364, 17.4529) at K -- 0.5. We can also find that  the same 

solution can be obtained by using Lingo code [40]. 
The solution trajectories with x versus the number of iterations are shown in Figures 2 and 3 

for p = 1 and p = 0% respectively. The influences of the K values on the same solution range 
between 0.1 and 3.0 for p -- 1 as well as p -- e% with learning ra te /z  ---- 0.01. 

4 .  A N N  F O R  M U L T I P L E  L E V E L  P R O G R A M M I N G  

The most  popular  approach to solve the nested MLP optimization problems is using the K K T  
conditions and transforms the original problem to its first level auxiliary problem [7]. In this 
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way, the problem is reduced to a regular mathematical programming problem. However, the 
transformed problem or the auxiliary problem is difficult to solve due to nonlinearity, which 
was introduced through the complementary slackness conditions (CSCs). Many researchers have 
devised approaches to solve this nonlinear problem [9]. We adopt the mixed-integer programming 
approach by introducing a binary variable, 7/E {0, 1}. Thus, the product constraint, wq = 0, is 
replaced by the following two simpler inequalities: q < MU and w _< (1 - rl)M [41]. The auxiliary 
formulation now becomes 

max f l(x1,  X2) ~-- c : i x  1 q- C;2X2, 

s.t. A i x i  + A2x2 _ b, 

w < (i - n ) M ,  

Aix1  q- A2x2 -- b < Mrl, (8) 

wTA2 = C22, 

. e {0, i } ,  

X1,X2,W ~ 0, 

where M is a large positive constant. 
The proposed ANN approach is applied to the above expression. Following the same procedure 

as that used in Section 3, the MLP problem can be solved. Furthermore, the KKT conditions 
can be applied to the much more general case of bilevel decentralized programming problems. 

To demonstrate the approach, two examples were solved. One is a bilevel programming problem 
and the other is a bilevel decentralized programming problem. 

EXAMPLE 2. A bilevel programming problem [7]. 

m a x f l  = - 2 x l  + l lx2 (upper level) 
xl 

where x2 solves 

max f2 = - x l  - 3x2 (lower level), 
x2 

s.t. x 1 - 2 x 2 < _ 4 ,  

2xl - x2 _< 24, 

3xi + 4x2 < 96, 

xl + 7x2 _< 126, 

- 4xl + 5x2 ~ 65, 

xi + 4x2 _> 8, 

Xl,372 ~ 0, 

The above constraint set will be represented by Y. 

Applying the KKT transformation, the above original problem becomes 

max f l  = --2Xl + 11x2, 

s.t. x E Y ,  

xl - 2x2 - 4 < M~I, 

2xl - x2 - 24 < M~2, 

3xl + 4x2 - 96 < M~3, 

Xl + 7x2 - 126 < M~4, 

wl < ( 1 -  vl)M, 

w2 <_ (1 - ~2)M, 

~ s  _< (1 - , 3 ) M ,  

w4 <_<_ (1 - ~a)M,  

- 4 x l + S x 2 - 6 5 < M ~ ,  w ~ < _ ( 1 - v s ) M ,  

- x l - 4 x 2 + 8 < M ~ 6 ,  w6_<(1-~16)M, 
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- 2wl - w2 + 4w3 + 7 w  4 q- 5w5 q- 4w6  ~-- -3 ,  

r/1,'r/2,T/3,r/4,?'/5,r]6 E {0,  1},  

Wl~W2~W3,W4~W5, W6 ~ O. 

Making use of the procedure discussed earlier, the above expression can be reformulated 
as an unconstrained optimization problem with branch-and-bound tree for 0-1 variables tin, 
n = 1 ,2 , . . . ,6 .  Using the MATLAB software [28] and with M = 1000, K = 0.5, and tt = 
0.005, the problem was solved and the results are (x~, x~) = (17.5000, 10.9000) with (f~', f~) -- 
(85.0909,-50.2000). Compared to the traditional approach [9] with Lingo [40], the solution is 
(x~, x~) = (17.45455, 10.90909) with (fi', f ; )  = (85.09091, -50.18182). 

The solution trajectory with x versus the number of iterations is shown in Figure 4 and the 
influences of the values of K (0.1 _< K < 1.0) respect to the reasonable solutions are tabulated 
in Table 1. 

2 0  

18 

16 

14 

12 

8 

0 u 
0 5 10 15 

i terat ions  x lo" 

Figure 4. Solution trajectories,  Example  2. 

Table 1. The  solutions with different values of pa ramete r  K (Example  2). 

K = 0.1 K = 0.5 K = 1.0 

Xl 

x2 

/1 

]2 

17.4546 17.5000 17.5000 

10.9089 10.9000 10.9000 

85.0889 85.0909 85.0909 

--50.1813 --50.2000 --50.2000 

X 1 

X 2 

Note: Learning rate pa ramete r  tt = 0.005 here. 



A Neural Network Approach 105 

EXAMPLE 3. A bilevel decentralized system with a center at the upper level and three indepen- 
dent divisions at the lower level [4]. 

m a x  f l  = Xl  + x2 + 2xa + x4 ,  
x l  

where x2, x3, and x4 solve 

max f21 = xl  + 3x2 + x3 + x4; 

max f22 = Xl -b x2 + 3x3 -k x4; 

m a x  f23 =- X l  --k x2 -k x3 -'I- 3x4; 

s.t. 3 x l + 3 x 2 < 3 0 ,  2 x l + x 2 _ < 2 0 ,  

x3<_10, x 2 + x 4 _ < 1 5 ,  

x 4 ~ 10, Xl -k 2x2 -b 2x3 + x4 < 40, 

Xl~X2~X3~x 4 ~ O. 

The above constraint will be expressed as Z. 

After applying the K K T  conditions to the original problem, a new auxiliary problem with only 
one level will be obtained. By exploiting For tuny-Amat  and McCarl 's  suggestion [41], we obtain 
a simple expression as 

0 
0 2 3 4 5 6 7 8 9 10 

i terat ions  x lO s 

10 

6 

12 

. . . . . . . .  , . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . .  , . . . . . . . . . .  . . . . . . . . .  

i i : 
X 1 

X 
2 

Figure 5. Solution trajectories, Example 3. 
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Table 2. T he  solutions with different values of pa ramete r  K (Example  3). 

K = 0 . 1  K = 0 . 5  K = I . 0  K - - 2 . 0  

Xl 

x2 

x3 

x4 

A 

/21 

/22 

/23 

Note: (1) 

(2) 

9 7.7 6.3 6.1 

1 2.3 3.7 3.9 

10 10 10 10 

5 5 5 5 

35 35 35 35 

27 29.6 32.4 32.8 

45 45 45 45 

35 35 35 35 

Learning rate  pa rame te r / z  = 0.01 here. 

Al ternat ive  opt imal  solutions exist in th is  example.  

max f l  = xl  + x2 + 2x3 + x4, 

s.t. x c Z .  

wl _< (1 - 7h)M , 3xi + 3x2 - 30 < MTh, 

w2 _< (1 - 7/2)M, 2x l  + x2 - 20 _< Mqe, 

w3 _~ (1 -- ~]3)M, (x3 - 10) < M ~ 3 ,  

w4 _~ (l  - r]4)M , (x2 'F x4 - 15) _~ M~]4, 

_< (1 - ( x 4  - 10)  _< 

w6 _< (1 - ~]6)M, (zl  + 2x2 + 2=3 + x4 - 40) < M~]6, 

3Wl + w2 + 2w6 = 3, w3 --~ w4 -~- 2w6 = 3, 

w4 +w5 +w6 = 3, 

711,1)2, ~3, ?74, ?]5, T]6 E {0,  1}, 

W l , W 2 , W 3 , W 4 , W h , W  6 :> O. 

Following the same procedure of Example  2, the above expression can be first reformulated 
as an unconstrained optimization problem, and then solved by using the MATLAB [29] soft- 
ware. With M = 1000, K = 0.5, and ~ = 0.01, the solution obtained is (x~,x~,x~,x~) = 
(7.7, 2.3, 10, 5) with objective (f~', f2'1, f~2, f~3) ---- (35, 29.6,45, 35). Using the tradit ional  ap- 
proach, the optimal solutions obtained are (x~, x~, x~, x~) -- (5, 5, 10, 5) and (10, 0, 10, 5) with 
objectives (f~', f~l, f~2, f~3) = (35, 35, 45, 35) and (35, 25, 55, 35), respectively. However, we can 
find that alternative optimal solutions exist, with respect to different K values, in this example. 

The  solution t ra jec tory  with x versus the number  of i terations is shown in Figure 5, and the 
reasonable solutions with respect  to different K values (0.1 ~ K <_ 2.0) are listed in Table 2. 

5 .  D I S C U S S I O N S  

We have investigated MOP and MLP problems through the dynamic behavior of ANNs. In 
contrast to traditional approaches concentrating on soft algorithm, the ANN approach has the 
advantage of being implemented on an electronic circuit for real-t ime problem-solving. In dealing 
with large-size problems, the circuit designed can be realized on a VLSI which houses a friendly 
environment  for the hardware to manage the problems more efficiently. Furthermore,  the ANN 
approach functions the same way as the interior point method  in obtaining an approximate  
solution, which is different from the extreme-point search approach. 
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Due to a highly nonlinear  energy function from the t ransformat ion process of the K K T  con- 

ditions, the ANN approach to MLP problems would be difficult to handle provided tha t  the 

problem has more t han  three levels. In addition, we can see tha t  the range of K values for the 

MLP problems are smaller t han  those for the MOP problems. In  this part icular  regard, MLP 

problems are difficult to solve by using this approach. 

One problem exists while applying the ANN approach, which is the es t imat ion of the values of 

the parameters.  Although several pioneers suggested various guidelines to est imate the desirable 

parameters,  more rigorous investigations are expected. 

Since the simulat ion of our approach is conducted via employing the MATLAB so ,ware  on a 

digital computer,  we did not  implement  the network through hardware circuit. In  such a way, 

the t ime needed to get whatever solutions depends solely on the platform's  speed. Hence, the 

exploitation of massively parallel technology using ANN to solve MOP and MLP problems for 

computa t ional  savings will form one of our future researches. 
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